THE « INSTITUT EUROPEEN DE LA BIORAFFINERIE DE BAZANCOURT-POMACLE » : A SUITABLE BUSINESS MODEL FOR THE ATLANTIC REGION?

Laurent Bernier, Ph.D., P.Ag.
Senior Vice President Compliance & Administration
BioAmber
In a Nutshell

- Definition of a Biorefinery
- The Champagne-Ardenne’s Regional Agricultural Community: the Driving Force behind the Bazancourt-Pomacle Biorefinery?
- Bazancourt-Pomacle: Unique Value-creation Model – The BioAmber Case
- Can this Model be Replicated and How?
- Questions
Definition of Biorefinery

Biorefinery is the sustainable processing of biomass into a spectrum of marketable products and energy*

A few examples:

- C5 and C6 sugars, electricity and heat, lignin biorefinery using wood chips for bioethanol, electricity, heat, and phenols
- Syngas platform biorefinery for Fischer–Tropsch (FT) diesel and phenols from straw
- Oil biorefinery using oilseed crops for biodiesel, glycerin, and feed
- C6 sugar platform biorefinery for bioethanol and animal feed from starch crops

* IEA Bioenergy Task 42
The Bazancourt-Pomacle Biorefinery Location
The Bazancourt-Pomacle Biorefinery
The Bazancourt- Pomacle Biorefinery: A few Key Statistics and Member Companies

- 1200 full time and seasonal employees
- 800 indirect jobs
- 4 million tons of transformed biomass:
 - 2.6 M tons of sugar beets
 - 1 M tons wheat
 - 400,000 tons of other biomass

- Cristal Union (sugar beets to table sugar)
- Chamtor (wheat to starch and glucose)
- Cristanol (glucose/sucrose to bio-ethanol)
- Air Liquide (bio-CO₂)
- Soliance (cosmetic ingredients)
- Wheatoleo (bio-surfactants)
- Procethol 2G (second-generation ethanol)
Agriculture & Agribusiness in Champagne-Ardenne

- Total of 24,600 agricultural-related businesses
 - Represent 5% of all French agricultural operations
 - 50% for wine production
 - 30% major crops
 - 20% animal farming
- Added value around 6.9 billion Canadian dollars

- About 61% of the land occupied by those businesses
 - 49% arable land
 - 11% meadows
 - 1% vineyards
- 40,000 full time jobs
- 5.1 billion Canadian dollars of external trade surplus
PEOPLE WITH A VISION FOR GREENER CHEMISTRY, STRIVING TO MAKE A DIFFERENCE.
What is Succinic Acid

Succinic acid is a building block chemical that is used in a variety of products, including plastics, polyurethane, paints, lubricants, spandex and personal care ingredients.
Emerging Markets for Bio-based Succinic Acid

- **Paints & Coatings**: Improved corrosion inhibition, better mechanical properties, UV resistance.
- **Plastics**: Biodegradability, better impact and UV resistance.
- **Polyurethanes**: Improved durability and aesthetics.
- **Coolants & Corrosion inhibitors**: Improved corrosion inhibition.
- **Plasticizers**: Better mechanical properties.
- **Metal-work lubricants**: Improved stability.
- **Personal Care**: All natural, less irritating.
- **Food Solutions**: pH control & flavor enhancement.
Bioamber is a Producer of Bio-based Succinic Acid.

BioAmber Process
- Corn growing → Corn milling → Fermentation → Succinic acid

Petroleum Process
- Oil recovery → Naphtha cracking → Butane oxidation → Chemical conversion → Succinic acid

INNOVATIVE biotechnology:
- Cost structure is disruptive to the petrochemical industry
- Manufacturing has very low greenhouse gas emissions
- Business model does not rely on government subsidies

FIRST MOVER advantage:
- World’s largest succinic acid manufacturing facility
- Track record of delivering on important milestones

STRONG IP portfolio:
- Best in class yeast technology exclusively licensed from Cargill
- Patents and trade secrets for commercial design

Plant is CERTIFIED
BioAmber and Bazancourt – Key Interactions/Benefits

- Cristal Union (table sugar)
- Chamtor (starch and glucose)
- Cristanol (bio-ethanol)
- Air Liquide (bio-CO$_2$)
- Soliance (cosmetic ingredients)
- Wheatoleo (bio-surfactants)
- Procethol 2G (second-generation ethanol)
A Biorefinery’s Generic SWOT Analysis

<table>
<thead>
<tr>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Adding value to the sustainable use of biomass</td>
<td>• Involvement of stakeholders of different market sectors</td>
</tr>
<tr>
<td>• Production of a spectrum of biobased products and bioenergy</td>
<td>• Variability in quality and energy density of biomass</td>
</tr>
<tr>
<td>• Strong knowledge infrastructure available to tackle non-technical and technical issues</td>
<td>• Biomass value chains, including current/future market prices/availability not clear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITIES</th>
<th>THREATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Makes a significant contribution to sustainable development</td>
<td>• Instability in fossil fuel prices</td>
</tr>
<tr>
<td>• Strengthening the economic position of various market sectors (agriculture, forestry, chemical and energy)</td>
<td>• Global availability of renewable materials (climatic changes)</td>
</tr>
<tr>
<td>• Development of multipurpose biorefineries in a framework of scarce raw materials and energy</td>
<td>• High capital investment required</td>
</tr>
<tr>
<td></td>
<td>• Unknown short and long-term governmental policies</td>
</tr>
<tr>
<td></td>
<td>• Goals and end users often focused upon single product</td>
</tr>
</tbody>
</table>
Key Stakeholders:

- Producers & Users
 - Upstream: growers, growers' association, COOP, manufacturers
 - Downstream: processors, distributors, manufacturers
- Financing Community
 - Local/regional banks; private sectors, governments
- Other Stakeholders
 - Economic Development Leaders
 - Advocacy Groups
 - Service Providers
 - THE PUBLIC

Remember: Rome wasn’t built in a day!
THANK YOU - MERCI

www.bio-amber.com

laurent.bernier@bio-amber.com