High-Rate Treatment of Brewery Wastewater Using External Circulation Sludge Bed Technology

Presented by: Michael McMullin, ADI Systems Inc.
Date: May, 2016
The Client

- Oland Brewery, owned by Labatt Breweries of Canada, is the largest brewer in Nova Scotia
- Faced with increased discharge surcharges, newly-imposed limits on wastewater strength
- Corporate focus on environmental responsibility
- Ideal solution: on-site wastewater treatment, combined with green energy generation
Oland Brewery
Site-Specific Design Considerations

- Extremely limited space availability (<4500 ft², 400 m²)
- Close proximity to residential/commercial neighborhood
 - No odors
 - Noise limitations
 - Aesthetically unobtrusive
Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent</th>
<th>Required Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Flow (m³/d)</td>
<td>620</td>
<td>620</td>
</tr>
<tr>
<td>Peak Flow (m³/d)</td>
<td>975</td>
<td>975</td>
</tr>
<tr>
<td>COD (mg/l)</td>
<td>5370</td>
<td>< 600</td>
</tr>
<tr>
<td>COD Load (kg/d)</td>
<td>3330</td>
<td>---</td>
</tr>
<tr>
<td>BOD (mg/l)</td>
<td>3500</td>
<td>< 300</td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>700</td>
<td>< 300</td>
</tr>
<tr>
<td>TKN (mg/l)</td>
<td>47</td>
<td>< 100</td>
</tr>
<tr>
<td>TP (mg/l)</td>
<td>23</td>
<td>< 10</td>
</tr>
<tr>
<td>SO₄ (mg/l)</td>
<td>23</td>
<td>< 1500</td>
</tr>
<tr>
<td>pH</td>
<td>---</td>
<td>5.5-9.5</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>12-25</td>
<td>---</td>
</tr>
</tbody>
</table>
Biological Treatment

Two Major types: Anaerobic, Aerobic
Both used at Oland

- **Anaerobic (ECSB)**
 - Removes the bulk of the dissolved organics and suspended matter from the wastewater
 - Converts organic matter to biogas, suitable for utilization

- **Aerobic (aeration tank)**
 - Polishes ECSB effluent to further reduce organic strength
 - Oxidizes sulfide for odour control
Biological Treatment

Anaerobic

• Organic material \rightarrow CO$_2$ + CH$_4$ + H$_2$O + bacterial cells
• Very little energy is required, only for mixing and contact
• Methane is produced, yielding energy
• Sludge yield is much less than aerobic

Aerobic

• Organic material + O$_2$ \rightarrow CO$_2$ + H$_2$O + bacterial cells
• Supplying oxygen is energy intensive
• Sludge yield is significant
The Solution
Anaerobic + Aerobic Treatment

Equalization

Anaerobic (ECSB)

Aerobic

Solids Removal (DAF)

Influent Pump Station

Calamity Tank

Biogas to Utilization

Dewatering (Centrifuge)

Odour Control

Final Effluent

All in <400 m²!
High Rate External Circulating Sludge Bed (ECSB)

- High rate anaerobic treatment (15 to 35 kg COD/m3d -- Oland design value = 19.4)

Picture 1: Typical granular biomass (1-3 mm) and a cross section of a granule
ADI-ECSB Technology
Reactor Tank

- **Settlers**
 - Retain granular sludge in the lower part of the reactor and transmit biogas to the NT
 - Reduce turbulence in the upper part of the reactor.
ECSB Video
ECSB Tank Placement
ECSB Tanks in Place
Aeration System

- 150 m3 tank, c/w level transmitter, internal aeration piping, two aeration blowers, foam detector
 - Polishes ECSB effluent to meet discharge limits
 - Foam detector activates defoamer pump if necessary
 - Tank headspace vented to chemical scrubber
Dissolved Air Flotation

- DAF separates chemical and biological solids from the final effluent

- DAF feed pumps operate based on the aeration tank level
- Polymer addition and air bubbles float solids to the surface
- Ferric chloride addition for phosphorus precipitation
- Solids are skimmed off and pumped to the sludge holding tank
Sludge Dewatering (Centrifuge)

- Dewaters sludge from DAF
 - Estimated 3m3/d sludge at 18% solids concentration
 - Thickened sludge conveyed to dumpster
 - Centrate flows to sump
 - Sump headspace vented to chemical scrubber
Chemical Scrubber

- Scrubs odorous from gases from:
 - Influent sump
 - EQ tank
 - Calamity tank
 - Aeration Tank
 - Sludge Tank
 - Dumpster
 - Centrate Sump
Biogas

• Average methane concentration of 70%-80%; an excellent “green” fuel
• Positive displacement blower withdraws biogas from the ECSB, delivers it to the brewery boiler, displacing natural gas
• ~1200 m³/d design average production (~33 GJ/d)
If the boiler is down or biogas production exceeds boiler capacity, excess flared. No biogas escapes to the environment.
Oland Brewery Biological Waste Treatment System
Oland Brewery Biological Waste Treatment System
Latest Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent</th>
<th>Final Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (m³/d)</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>COD (mg/l)</td>
<td>7400</td>
<td>570</td>
</tr>
<tr>
<td>BOD (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>--</td>
<td>270</td>
</tr>
<tr>
<td>pH</td>
<td>5–12</td>
<td>7–8</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>12–25</td>
<td>30–37</td>
</tr>
</tbody>
</table>